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Abstract

Performance equations that describe the dependence of cathode potential on current density for polymer electrolyte fuel cells (PEFCs)
are developed based on a mechanistic approach. The equations take into account, in detail, potential losses caused by: (i) electric resistance
and gas transport limitations in the gas diffuser; (ii) limitations of oxygen diffusion, proton migration and electron conduction in the catalyst
layer; (iii) oxygen reduction within the catalyst layer. Derivation of the equations is initiated with the formulation of a one-dimensional
model and followed by the incorporation of appropriate profiles for oxygen concentration, ionomer potential and catalyst potential. The
final forms of the equations are obtained by lumping the oxygen reduction reaction at a reaction center of the catalyst layer. Since the
equations are derived from a mechanistic model, all parameters appearing in the equations are endowed with a precise physical meaning.
In addition, potential losses caused by various sources can be clearly quantified. Excellent agreement is found between the results obtained
from the equations and from the one-dimensional model over an extensive range of the values of model parameters. This indicates that
the present equations can be employed to replace the one-dimensional model as an efficient and convenient predictive tool for cathode
performance with greatly reduced computational efforts while keeping the same level of accuracy.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to their promising application as a power genera-
tion device in electric vehicles, polymer electrolyte fuel cells
(PEFCs) have received increasing attention during the past
decade. Parallel to the enhancements in the efficiency and
stability of PEFCs by the development of improved compo-
nents and fabrication techniques, progress in mathematical
modelling has provided a deeper insight into the physical
and chemical processes as an aid to better design and ap-
propriate operation.

Mathematical models with varying degrees of sophisti-
cation in transport phenomena and spatial dimensionality
have been developed. Rigorous formulation of a complete
cell with the membrane-electrode-assembly and the gas flow
channels leads to a three-dimensional model[1,2]. In ad-
dition to oxygen transport normal to the gas-diffuser face,
different considerations arise with a two-dimensional de-
sign, such as variation in oxygen concentration along the
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gas channels[3–6], inaccessibility on the face of the gas
diffuser to oxygen gases due to the rib structure of carbon
plates[7–9], or interdigitated flow fields[10]. With differ-
ent assumptions, wide variations can also be found in the
one-dimensional PEFC models[11–18]. Without taking spa-
tial gradients of concentration and potential into account,
PEFC models in the form of algebraic equations have also
been proposed[19–24].

Based on the methodologies in formulation, the PEFC
models can be considered as mechanistic, empirical, or
semi-empirical in nature. A mechanistic model is derived
from phenomenological mass transport and conservation
equations. Thus, the complexity of the models varies with
the mechanisms taken into account. On the other hand, an
empirical model is typically one equation composed of a
few terms that account for the observed characteristics of
experimental data. A semi-empirical model is featured by
the characteristics of both approaches. A complex mecha-
nistic model is formulated in a more involved way and thus
it is able not only to exhibit a great predictive power but to
provide a better interpretation of experimental data as well.
In addition to the considerable modelling and computational
efforts that are required, the model parameters governing
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Nomenclature

a parameter inEq. (24)
A effective platinum surface area per unit

volume (cm2 cm−3)
cO2 oxygen concentration (mol cm−3)
cO2,ref reference oxygen concentration

(mol cm−3), defined asP/HO2

d gas-diffuser thickness (mm)
Deff
i–j effective binary diffusion coefficient

for i andj species (cm2 s−1)
Deff

O2
effective diffusivity of dissolved oxygen in
the catalyst layer (cm2 s−1)

F Faraday’s constant (96,487 C per
equivalent)

HO2 Henry’s constant for oxygen
(atm cm3 mol−1)

i protonic current density (A cm−2)
ie electronic current density (A cm−2)
io,ref exchange current density at reference

condition (A cm−2)
I cathode current density (A cm−2)
Io reference current density (A cm−2),

defined byEq. (11f)
keff

d effective electronic conductivity for
gas diffuser (mho cm−1)

keff
m effective protonic conductivity for

the ionomer phase (mho cm−1)
keff

s effective electronic conductivity for solid
catalysts (mho cm−1)

n number of electrons transferred in reaction
Ni molar flux of speciesi (mol cm−2)
P total pressure (atm)
R the universal gas constant

(8.314 J mol−1 K−1)
T cathode temperature (K)
V potential of catalysts (V)
V ∗ catalyst potential at reaction center (V)
Vc cathode potential (V)
Vo equilibrium potential (V)
w dimensionless position where oxygen

depletion occurs
xi molar fraction of speciesi
x̄O2 average value ofxO2 over catalyst layer
xs

O2
xO2 at catalyst-layer|gas-diffuser interface

z co-ordinate perpendicular to face of
the gas diffuser (�m)

Greek letters
αi electrode transfer coefficient
βi parameter, defined byEq. (11b)(mho cm−2)
β2 parameter, defined byEq. (11c)(mho cm−2)
β3 parameter, defined byEq. (28)(mho cm−2)
β4 parameter, defined byEq. (33)(A−1 cm2)
γ kinetic coefficient taken as unity

δ the catalyst-layer thickness (�m)
ζ dimensionless co-ordinate, defined

by Eq. (11d)
φ ionomer potential (V)
φ∗ ionomer potential at the reaction center (V)
ϕ parameter, defined byEq. (11a)

the various sources of polarization within the PEFCs are
related in a complex nature that cannot be easily captured.
In other respects, empirical models are characterized by a
simple algebraic expression that relates cell potential and
current density[19–21]. Due to the lack of physical origin
and significance in the model parameters, however, they are
abundant with fitting coefficient which thus eliminates the
possibility of using them as predictive tools. In order to cir-
cumvent the drawbacks of empirical models, semi-empirical
formulation of a performance equation has been proposed
to reduce the number of fitting coefficients, in which both
mechanistic and empirical features are present in the model
parameters[22–25].

In the present work, an attempt is made to derive perfor-
mance equations with all mechanistic derived coefficients.
In order to do this, attention is first paid to the chemical
and transport phenomena that occur in the cathode of a
PEFC and formulate a one-dimensional mechanistic model
that takes into account spatial variations of concentration
and potential in the catalyst layer and the gas diffuser. By
approximating the concentration and potential profiles with
appropriate shape functions and lumping the oxygen reduc-
tion reaction at the reaction center, it is possible to reduce
the one-dimensional model to a single performance equa-
tion that presents the relationship between cathode potential
and current density. Because the performance equations are
derived from a mechanistic model, they can be employed
as a predictive tool while characterized by simple algebraic
expression just like empirical model equations. In addition,
individual contributive terms to the overall cathode polariza-
tion can be clearly identified. Computational results also re-
veal that excellent agreement exists between the polarization
curves (calculated based on the one-dimensional model) and
the developed performance equations. This indicates that the
derived performance equations can be used as a replacement
for the one-dimensional model without introducing any ap-
preciable errors.

2. One-dimensional model

The mathematical model for the PEFC cathodes consid-
ered in the present work is a one-dimensional, steady-state
and isothermal model. The cathodes are composed of two
major components, namely, a catalyst layer and a gas dif-
fuser. In the former, it is assumed that catalyst particles, usu-
ally in the form of platinum supported on carbon black or of
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unsupported platinum black, are homogeneously mixed with
a proton-conductive ionomer. The gas diffuser, which is in
intimate contact with the catalyst layer, is made of carbon pa-
per or carbon cloth with hydrophobic treatment. During op-
eration, oxygen gases, mostly coming from a humidified air
stream, penetrate the gas diffuser to reach its interface with
the catalyst layer, and then dissolve into the ionomer phase.
Since the ionomer consists of both hydrophobic branches
and hydrophilic groups, there might also exist some void
spaces in the catalyst layer. Thus, some oxygen gases will
diffuse further into the inner region of the catalyst layer via
gas channels, and dissolve into the ionomer phase thereby.
In the ionomer phase, the dissolved oxygen will continue to
travel to the surface of the platinum particles, where an elec-
trochemical reaction with the protons from the anode occurs
and can be described by

4H+ + 4e− + O2 ⇔ 2H2O

The Bulter–Volmer equation for the rate of the above elec-
trochemical reaction gives

∇ · i = Aio,ref

(
cO2

cO2,ref

)γ [
exp

(−αanF(Vo − V + φ)

RT

)

− exp

(
αcnF(Vo − V + φ)

RT

)]
(1)

whereαi is the electrode transfer coefficient;i the protonic
current density;A the effective platinum surface area per unit
volume;io,ref is the exchange current density at the reference
condition;γ a kinetic coefficient and taken as unity;T the
temperature of the catalyst layer;R the universal gas con-
stant;cO2 the dissolved oxygen concentration;n the number
of electrons transferred in the reaction;Vo the equilibrium
potential;V the catalyst potential; andφ the ionomer poten-
tial.

The mass-balance equation of oxygen in the catalyst layer
can be written as

Deff
O2

∇2cO2 + ∇ · i
nF

= 0 (2)

in whichDeff
O2

is the effective diffusivity of dissolved oxy-
gen in the catalyst layer. As stated previously, oxygen may
diffuse in the catalyst layer via different paths, i.e. gas pores
or hydrated ionomer. In fact, the value ofDeff

O2
may vary

significantly due to the various degrees of involvement of
these two different diffusion routes. In the present study, the
details of the oxygen diffusion mechanism are not consid-
ered. Instead,Deff

O2
is treated as an adjustable parameter so

as to investigate its influence on cathode performance and
to explore the discrepancies between the performance equa-
tions and the one-dimensional model under different rates
of oxygen transport. The ohmic potential losses in the cat-
alyst layer are attributed to both proton migration through
the ionomer phase and electron conduction in the solid cata-
lysts. Applying Ohm’s law to the motion of both the proton

and the electrons gives

dV

dz
= ie

keff
s

(3)

and

dφ

dz
= − i

keff
m

(4)

wherekeff
s andkeff

m denote the effective electric conductivity
for the solid catalysts and the effective protonic conductiv-
ity for the ionomer phase, respectively, andie represents the
electronic current density. From electroneutrality, one ob-
tains

∇ · i+ ∇ · ie = 0 (5)

As a humidified air stream is used as the cathode feed, three
gaseous species, viz. oxygen, nitrogen and water vapor, exist
in the diffusion layer. The Stefan–Maxwell equations for
multi-component diffusion are usually a starting point for
the description of gas transport in the gas diffuser, and take
the form

∇xi =
n∑
j=1

RT

PDeff
i–j
(xiNj − xjNi), i = N2,w,O2 (6)

whereDeff
i–j is an effective binary diffusion coefficient in

the porous medium fori and j species andNi the molar
flux of speciesi with xi its molar fraction. It is assumed
that a phase equilibrium between the water vapor and its
condensed phase is achieved at each point of the gas diffuser.
Also, the molar flux of nitrogen is taken to be zero due to
its inertness. Thus, the Stefan–Maxwell equations can be
condensed into one single equation[13], i.e.

P

RT
∇xO2

= −(1 − xw − xO2)NO2

×
[

1

Deff
N2–O2

+ xw

xO2D
eff
N2–w + (1 − xw − xO2)D

eff
O2–w

]

(7)

In order to facilitate computations, the above equations were
rearranged and written in partially dimensionless form. In
the catalyst layer (0< ζ < 1)

d2xO2

dζ2
− ϕ

[
exp

(
αcnF(V0 − V + φ)

RT

)

− exp

(−αanF(V0 − V + φ)

RT

)]
xO2 = 0 (8)

β1

Io

d2V

dζ2
+ d2xO2

dζ2
= 0 (9)

d2xO2

dζ2
− β2

Io

d2φ

dζ2
= 0 (10)
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where

ϕ = Aio,refHO2δ
2

nFPDeff
O2

(11a)

β1 = keff
s

δ
(11b)

β2 = keff
m

δ
(11c)

ζ = z

δ
(11d)

xO2 = HO2cO2

P
(11e)

Io = nFPDeff
O2

HO2δ
(11f)

where δ denotes the catalyst-layer thickness andHO2 the
Henry’s constant for gaseous oxygen and its dissolved form
in the ionomer phase at the cathode temperature. It should
be noted thatxO2 denotes the molar fraction of oxygen in
the gas phase of the diffuser but stands for the dimension-
less concentration of dissolved oxygen in the ionomer phase
within the catalyst layer as defined byEq. (11e). The same
notation is used in these two domains because by such def-
initions xO2 profiles are continuous across their boundary.

In the gas diffuser (1< ζ < b), two more equations are
required in addition toEq. (7), viz.

dNO2

dζ
= 0 (12)

d2V

dζ2
= 0 (13)

whereV is the potential of the carbon paper (or cloth). This
is the same symbol as that used for the potential of solid
catalysts in the catalyst layer since these two quantities are
identical at the boundary between these two regions. At the
face of the gas diffuser (ζ = b), two more boundary condi-
tions are required apart fromEq. (12)i.e.

xO2 = xb
O2

(14)

V = Vc (15)

wherexb
O2

indicates the oxygen molar fraction in the bulk
flow and Vc is the cathode potential. At the gas-diffuser|
catalyst-layer interface, six boundary conditions are needed
since there are three state variables in each domain. First,
Eq. (12) is also applied. In addition, continuities ofV and
xO2require

xO2 (catalyst layer) = xO2 (gas diffuser) (16)

V (catalyst layer) = V (gas diffuser) (17)

Equivalence of oxygen molar flux and electric current den-
sity on both sides of the boundary leads to

keff
s

dV

dζ
(catalyst layer) = keff

d
dV

dζ
(gas diffuser) (18)

Io

nF

dxO2

dζ
(catalyst layer) = −NO2 (19)

Because protons are not able to penetrate the catalyst-layer|
gas-diffuser interface, zero protonic current is expected here,
which gives

dφ

dζ
= 0 (20)

At the membrane|catalyst-layer interface(ζ = 0), the bound-
ary conditions are formulated as

φ = 0 (21)

dxO2

dζ
= 0 (22)

dV

dζ
= 0 (23)

The mathematical model described above was formulated
following the lines of Bernardi and Verbrugge[13] as well
as Springer et al.[17]. Compared with the work of Bernardi
and Verbrugge[13], a membrane is not included and flow
of liquid water in the catalyst layer is not taken into account
in the present model for the sake of simplification. Finite
values of electric conductivity for the solid catalysts and the
gas diffuser are considered to account for ohmic potential
loss due to electronic movement, which are neglected in the
work of Springer et al.[17].

The model equations derived above form a three-point
boundary value problem with three state variables in each
domain. The method of collocation on finite elements based
on cubic B-spline interpolation was employed for the nu-
merical solutions of the model equations[26]. First, the do-
mains of the gas diffuser and the catalyst layer were divided
into several sub-intervals, respectively. Because of the mod-
erate non-linearity of the Stefan–Maxwell equations and the
mild steepness for the oxygen concentration profiles devel-
oped in the gas diffuser, only three sub-intervals with equal
sizes were arranged in this domain. Twelve sub-intervals of
non-equal sizes were employed in the catalyst-layer domain
to account for high non-linearity of the electrochemical
rate expression for the Bulter–Volmer equation and soaring
oxygen concentration gradients developed at high current
densities. In the catalyst-layer domain, the sizes of the
sub-intervals were decreased along theζ-direction by a
common ratio of 0.37. Continuities of the first derivatives of
all state variables were required at each breakpoint point of
sub-intervals except the gas-diffuser|catalyst-layer interface.
Two points were collocated in each sub-interval, which
thus transforms the model equations into a set of algebraic
equations. Newton’s method was employed to obtain the
numerical solutions of the resulting algebraic equations.
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3. Approximate model I for performance equations

It is assumed that the dimensionless oxygen concentration
profile in the catalyst layer can be described by a parabolic
function, which has the form

xO2 = aζ2 + xs
O2

− a (24)

wherexs
O2

denotes the value ofxO2 at the catalyst-layer|gas-
diffuser interface.Eq. (24) naturally satisfies the bound-
ary conditions atζ = 0 and 1. By relating the current
density with the flux of dissolved oxygen at the catalyst-
layer|gas-diffuser interface,a can be expressed as

a = I

2Io
(25)

whereI stands for the cathode current density. The profiles
of ionomer potential and catalyst potential within the cata-
lyst layer can be easily derived fromEqs. (9), (10) and (24)
together with their associated boundary conditions, which
are

V = − I

2β1
ζ2 + I

2β1
+ Vc + I

β3
(26)

φ = I

2β2
ζ2 − I

β2
ζ (27)

where

β3 = keff
d

d
(28)

keff
d represents the effective electric conductivity of the gas

diffuser andd its thickness. Furthermore, the anodic reac-
tion rate is neglected and the rate of electrochemical reac-
tion occurring in the catalyst layer is lumped at the reaction
center, which is defined by

ζ∗ =
∫ 1

0 ζxO2 dζ∫ 1
0 xO2 dζ

= 3(4xs
O2
Io − I )

8(3xs
O2
Io − I )

(29)

Based on the two approximations stated above, one can have

I = Aio,refδ

[
exp

(
αcnF(V0 − V ∗ + φ∗)

RT

)]
x̄O2 (30)

where V ∗ and φ∗represent the catalyst potential and the
ionomer potential at the reaction center, respectively.x̄O2

stands for the average value ofxO2 over the catalyst layer,
which is calculated by

x̄O2 =
∫ 1

0
xO2 dζ = xs

O2
− I

3Io
(31)

By following the approach of Pisani et al.[25], that is
to approximateDeff

w–O2
with Deff

N2–w, Eq. (7)can be directly
solved andxs

O2
can be expressed as

xs
O2

= xb
O2

− xb
N2

[exp(β4I )− 1] (32)

where

β4 = RTd

nFP

[
1

Deff
N2–O2

+ xw

(1 − xw)D
eff
N2–w

]
(33)

After evaluatingV∗, φ∗ andx̄O2in Eq. (30)with Eq. (26) and
(27) and then taking logarithms on both sides, one arrives at

Vc = Vo − I

128β1

(36xs
O2
Io − 11I )(12xs

O2
Io − 5I )

(3Ioxs
O2

− I )2

− I

β3
− 3I

128β2

(4xs
O2
Io − I )(36xs

O2
Io − 13I )

(3xs
O2
Io − I )2

− RT

αcnF
ln

[
I

ϕ(xs
O2
Io − I/3)

]
(34)

The overall potential loss in a PEFC cathode can be
viewed as a summation of diffusion overpotential and ohmic
overpotential for electron conduction in the gas diffuser, dif-
fusion overpotential and ohmic potential losses for proton
migration and electron conduction in the catalyst layer, and
activation overpotential for the electrochemical reaction. It
is noted that each individual contribution in the cathode
potential loss can be clearly quantified inEq. (34), which
are

diffusion overpotential in gas diffuser= RT

αcnF
ln

(
xb

O2

xs
O2

)

(35)

activation overpotential for electrochemical reaction

= RT

αcnF
ln

(
I

ϕxb
O2
Io

)
(36)

diffusion overpotential in catalyst layer

= RT

αcnF
ln

(
xs

O2
Io

xs
O2
Io − I/3

)
(37)

ohmic loss(electronic) in catalyst layer

= I

128β1

(36xs
O2
Io − 11I )(12xs

O2
Io − 5I )

(3xs
O2
Io − I )2

(38)

ohmic loss(protonic) in catalyst layer

= 3I

128β2

(4xs
O2
Io − I )(36xs

O2
Io − 13I )

(3xs
O2
Io − I )2

(39)

ohmic loss(electronic) in diffusion layer= I

β3
(40)

Eq. (24) is only valid for the condition thatxO2at the
membrane|catalyst-layer interface (ζ = 0) is greater than
zero, which indicates

I ≤ 2Io{xb
O2

− xb
N2

[exp(β4I )− 1]} (41)
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As the current density exceeds the critical value,Eq. (41)
is no longer satisfied andEq. (34) is not applicable either.
Under such a condition, another function is proposed for
the dimensionless oxygen concentration profile within the
catalyst layer, namely

xO2 = xs
O2

(
ζ − w

1 − w

)2

for w ≤ ζ ≤ 1 and

xO2 = 0 for 0 ≤ ζ ≤ w (42)

wherew denotes the dimensionless position in the catalyst
layer where oxygen is completely consumed by the electro-
chemical reaction. Relating the transport rate of dissolved
oxygen at the catalyst-layer|gas-diffuser interface to the elec-
tric current density of the cathode results in

w = 1 − 2xs
O2
Io

I
(43)

Accordingly,

V = −x
s
O2
Io

β1

(
ζ − w

1 − w

)2

+ xs
O2
Io

β1
+ I

β3
+ Vc

for w ≤ ζ ≤ 1

V = xs
O2
Io

β1
+ I

β3
+ Vc for 0 ≤ ζ ≤ w (44)

φ = xs
O2
Io

β2

1

(1 − w)2
(ζ − w)(ζ + w− 2)− wI

β2

for w ≤ ζ ≤ 1

φ = − I

β2
ζ for 0 ≤ ζ ≤ w (45)

ζ∗ = 1 − xs
O2
Io

2I
(46)

x̄O2 = 2(xs
O2
)2Io

3I
(47)

Just following the same procedures as those without oxygen
depletion, the cathode potential can be related to the electric
current density as

Vc = Vo − 7xs
O2
Io

16β1
+ 17

16

xs
O2
Io

β2
− I

β2
− I

β3

− RT

αcnF
ln

[
3I2

2ϕ(xs
O2
Io)2

]
(48)

The diffusion overpotential and the electronic ohmic
loss of the gas diffuser and the activation overpotential for
the electrochemical reaction have the same expressions as
those ofEqs. (35), (36) and (40). Other contributive terms

have the forms

diffusion overpotential of catalyst layer

= RT

αcnF
ln

[
3I

2Ioxs
O2

]
(49)

ohmic loss(electronic)of catalyst layer= 7xs
O2
Io

16β1
(50)

ohmic loss(protonic)of catalyst layer= I

β2
− 17

16

xs
O2
Io

β2

(51)

4. Approximate model II for performance equations

The performance equations derived previously can be
further simplified if the potential profiles of the solid cat-
alysts and the ionomer phase in the catalyst layer are as-
sumed to be piecewise linear rather than parabolic as stated
in the approximate model I. Following the postulation
that the electrochemical reaction is lumped at the reaction
center, the ionomer potential decreases linearly from the
membrane|catalyst-layer interface to the reaction center due
to an invariant protonic current density. In addition, the
ionomer potential profile becomes flat after the reaction
center since the protonic current density is essentially zero
in this region. On the other hand, the potential profile of the
solid catalysts behaves oppositely. It appears as a horizon-
tal line from the membrane|catalyst-layer interface to the
reaction center because of the absence of electronic move-
ment in this region and decreases linearly thereafter due to
a constant electronic current. Based on these observations,
the potential profiles for the solid catalysts and the ionomer
can be written as

V = I

β1
(1 − ζ)+ I

β3
+ Vc for ζ∗ ≤ ζ ≤ 1;

V = I

β1
(1 − ζ∗)+ I

β3
+ Vc for 0 ≤ ζ ≤ ζ∗ (52)

φ = − I

β2
ζ∗ for ζ∗ ≤ ζ ≤ 1;

φ = − I

β2
ζ for 0 ≤ ζ ≤ ζ∗ (53)

As a result, the performance equation becomes

Vc = Vo − I

β1

12xs
O2
Io − 5I

24xs
O2
Io − 8I

− I

β2

12xs
O2
Io − 3I

24xs
O2
Io − 8I

− I

β3

− RT

αcnF
ln

[
I

ϕ(xs
O2
Io − I/3)

]
(54)

for the condition without oxygen depletion. Accordingly,
ohmic losses due to the electron conduction and proton
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migration are modified to

ohmic loss(electronic) in catalyst layer

= I

β1

12xs
O2
Io − 5I

24xs
O2
Io − 8I

(55)

ohmic loss(protonic) in catalyst layer

= I

β2

12xs
O2
Io − 3I

24xs
O2
Io − 8I

(56)

while other contributive terms in the cathode polarization
remain the same. As oxygen depletion occurs, the perfor-
mance equation is changed to

Vc = Vo − xs
O2
Io

2β1
+ xs

O2
Io

2β2
− I

β2
− I

β3

− RT

αcnF
ln

[
3I2

2ϕ(xs
O2
Io)2

]
(57)

Thus, the ohmic losses due to electron conduction and proton
migration have to be re-evaluated as

ohmic loss(electronic)of catalyst layer= xs
O2
Io

2β1
(58)

ohmic loss(protonic)of catalyst layer= I

β2
− 1

2

xs
O2
Io

β2

(59)

The performance equations derived based on the approx-
imate model II appear to have simpler expressions for the
ohmic losses pertinent to proton migration and electron
conduction in the catalyst layer than those based on the
approximate model I, particularly for the condition that
oxygen depletion does not yet occur. At low current density,
however, such differences would be of little significance
compared with other contributive terms of polarization. At
high current densities, most dissolved oxygen in the cat-
alyst layer is consumed within a narrow region close to
the catalyst-layer|gas-diffuser interface. Consequently, the
potential loss caused by proton migration becomes com-
pletely dominant in the ohmic losses of the catalyst layer
due to much lower values of protonic conductivity and
much longer travel distance for protons. As a result, the
differences between the performance equations formulated
according to these two approximate models are expected
to be negligible. These observations imply that the perfor-
mance equations of the approximate model II are derived
using simpler forms of potential profiles for the ionomer
phase and the solid catalysts, but most likely with no ap-
preciable degradation of accuracy. Detailed comparisons
based on computations will be delineated in the following
sections.

5. Results and discussion

The one-dimensional model and the performance equa-
tions formulated in the previous sections have been used to
construct the polarization curves for PEFC cathodes in order
to investigate the accuracy of the performance equations. The
parameter values used for the base case are listed inTable 1.
In fact, due to the variations in the techniques and in the
properties of materials used for fabricating a PEFC cathode,
the values of its physical and chemical properties may differ
by some orders of magnitude. As mentioned previously, the
major objective of the present study is to investigate the ac-
curacy of the performance equations by taking the numerical
solutions of the one-dimensional model as exact ones for an
extended parameter range. In order to do this, computations
were carried out by adjusting the magnitude of a particular
parameter inTable 1, while other parameter values remain
fixed. The loci of the performance equations as well as the
solutions of the one-dimensional model for the base case
are shown inFig. 1. There is rather good agreement among
these three curves since they cannot be distinguished except
the region near the limiting currents. The differences in the
limiting currents calculated based on the performance equa-
tions and the one-dimensional model are caused partially by
the approximation (Eq. (32)) that is used to evaluate the oxy-
gen concentration at the gas-diffuser|catalyst-layer interface,

Table 1
Values of model parameters for base case

Effective ionic conductivity of ionomer,
keff

m (mho cm−1)
1.06 × 10−2

Effective electric conductivity of catalyst,
keff

s (mho cm−1)
0.354

Effective electric conductivity of gas
diffuser, keff

d (mho cm−1)
0.5

Effective diffusivity of dissolved oxygen in
the catalyst layer,Deff

O2

4.2 × 10−7

Effective gas-pair diffusivity,
Deff

O2–N2
(= ε1.5DO2–N2) (cm2 s−1)

6.97 × 10−3

Effective gas-pair diffusivity,
Deff

N2–w (= ε1.5DN2–w) (cm2 s−1)
9.67 × 10−3

Effective gas-pair diffusivity,
Deff

O2–w (= ε1.5DO2–w) (cm2 s−1)
9.48 × 10−3

Gas-diffuser thickness,d (�m) 300
Catalyst-layer thickness,δ (�m) 10
Effective porosity of gas diffuser,ε 0.25
Product of platinum surface area and

reference exchange current,Aio,ref

(A cm−3)

4.1 × 10−4

Pressure,P (atm) 5
Bulk oxygen molar fraction,xb

O2
0.190

Bulk nitrogen molar fraction,xb
N2

0.716
Molar fraction of water vapor,xw 0.094

Temperature,T (◦C) 80
Henry’s constant,HO2 (atm cm3 mol−1) 2.0 × 105

Equilibrium potential,Vo (V) 1.2
Cathodic transfer coefficient,αc 0.5
Anodic transfer coefficient,αa 0.5
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Fig. 1. Polarization curves for base case. (�) One-dimensional model;
(�) approximate model I; (�) approximate model II.

and partially by the numerical errors of the one-dimensional
model due to extremely high oxygen concentration gradi-
ents developed while the current density approaches its lim-
iting value. The individual contributive terms of the overall
cathode polarization for the base case shown inFig. 1 are
displayed inFig. 2, which are calculated using the perfor-
mance equations derived from the approximate model II. It
is seen that the ohmic potential loss pertinent to electron
motion in the catalyst layer is negligible for the entire range
of current density because of the high electric conductivity
of the solid catalysts and the small thickness of the layer.
The activation overpotential for oxygen reduction increases
sharply at extremely low current densities. As the current
density is further increased, the activation overpotential in-
creases in a more moderate fashion and other contributive
terms for the cathode potential losses gain more importance.
The potential losses for proton migration in the ionomer

Fig. 2. Polarization curves of individual contributive terms for the base
case calculated using approximate model II. (�) Ohmic potential loss of
catalyst; (�) activation overpotential for oxygen reduction reaction; (�)
diffusion overpotential of catalyst layer; (�) diffusion overpotential of
gas diffuser; (�) ohmic potential loss of ionomer in catalyst layer; (�)
ohmic potential loss of gas diffuser.

Fig. 3. Polarization curves for cathodes with different catalyst-layer thick-
nesses. (A)δ = 5�m; (B) δ = 20�m; (�) one-dimensional model; (�)
approximate model I; (�) approximate model II.

phase of the catalysts layer and electron conduction in the
gas diffuser are quite similar; both appear linear but with
different slopes. The diffusion overpotential in the catalyst
layer exhibits similar characteristics to those of the activa-
tion overpotential at low and intermediate densities; never-
theless, it increases sharply to infinity as the limiting current
is approached. Such a phenomenon is also observed for the
diffusion overpotential for the gas diffuser due to the vanish-
ing of oxygen concentration at the catalyst-layer|gas-diffuser
interface.

The polarization curves for two cathodes with different
thickness of the catalyst layer, i.e. 5 and 20�m, are given
in Fig. 3. It is seen that the results calculated based on the
performance equations of the approximate models I and II
and the one-dimensional model are well matched. At low
current densities, oxygen is able to reach every point of the
catalyst layer. Thus, a thicker catalyst layer indicates that
larger space is available for the oxygen reduction reaction.
As a result, a lower activation overpotential is required to
generate the same electric current. In other respects, higher
values of ohmic potential losses for proton migration is ex-
pected for a thicker catalyst layer due to the longer travel dis-
tance. Moreover, a higher diffusion overpotential is formed
by a lower average value of oxygen concentration over the
catalyst layer. Recall that potential loss caused by electron
conduction in the catalyst layer is negligible. Computational
results reveal that the first factor is more pronounced than
the other two at low current densities, which thus results in a
higher potential for the cathode with a thicker catalyst layer.
At intermediate and high current densities, however, oxygen
depletion takes place within the catalyst layer; therefore, the
influence of the first factor diminishes and those of the other
two become dominant. As a consequence, a higher poten-
tial is found for the cathode with a thinner catalyst layer. It
should be noted that the diffusion overpotential of the dif-
fuser does not change with the thickness of the catalyst layer
as indicated byEq. (35).
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Fig. 4. Polarization curves for cathodes with different product values of
Aio,ref. (A) Aio,ref = 4.1×10−3A cm−3; (B) Aio,ref = 4.1×10−5A cm−3;
(�) one-dimensional model; (�) approximate model I; (�) approximate
model II.

The polarization curves calculated for two cathodes with
different product values ofAio,ref, viz. 4.1×10−3 and 4.1×
10−5 A cm−3, are displayed inFig. 4. Again, the polarization
curves obtained using the approximate models I and II agree
well with those from the one-dimensional model. Among
all the parameters considered in the present models,Aio,ref
is the only one that characterizes the activity of the cathode
catalysts. Ifio,ref remains unchanged, a larger product value
of Aio,ref implies that the cathode is composed of catalysts
with a higher platinum dispersion, which provide a larger
active surface area to accommodate oxygen reduction. For
a cathode with a higher value ofAio,ref, a lower activation
overpotential is required to generate an identical electric
current; thus, a higher cathode potential is expected. Such
an effect can be quantitatively estimated byEq. (36). As
shown, a difference of 0.07 V in the cathode potential results
from the two differentAio,ref values used in calculating the
results presented inFig. 4.

Investigation of the discrepancies among the polarization
curves from the approximate models I and II and from the
one-dimensional model was carried out for cathodes with
two different values of effective diffusivity of oxygen in the
catalyst layer (Deff

O2
). The results are presented inFig. 5.

A fairly good agreement is found between the three mod-
els as in the previous cases. The parameterDeff

O2
provides a

quantified measure of the transport ability of oxygen un-
der the multiphase structure of the catalyst layer. A higher
value ofDeff

O2
indicates that oxygen is able to reach a deeper

portion of the catalyst layer and, consequently, a lower dif-
fusion overpotential in the catalyst layer results. This, in
turn, gives rise to a higher cathode potential. As shown, the
difference in limiting current density calculated using the
one-dimensional model and the approximate ones for the
cathode withDeff

O2
= 2.1× 10−7 cm2 s−1 is much lager than

that withDeff
O2

= 2.1×10−5 cm2 s−1. This is attributed to the
fact that a steeper oxygen concentration profile is formed for

Fig. 5. Polarization curves for cathodes with different values of effective
oxygen diffusivity in catalyst layer. (A)Deff

O2
= 2.1 × 10−5 cm2 s−1; (B)

Deff
O2

= 2.1×10−7 cm2 s−1; (�) one-dimensional model; (�) approximate

model I; (�) approximate model II.

the catalyst layer with a lowerDeff
O2

, which therefore leads to
larger numerical errors in the region near the limiting cur-
rent. Nevertheless, the present performance equations yield
the same values of limiting current for theses two cases.

Polarization curves are constructed inFig. 6 for two
cathodes with different values of effective ionomer con-
ductivity in the catalyst layer by using the three models
formulated in the present study. The curves from the three
models almost coincide. In addition, the cathode withkeff

m =
0.035 mho cm−1 always exhibits a higher cathode potential
than that withkeff

m = 0.0035 mho cm−1 for the same current
density. The computational results also revealed that the
effect of keff

m on the cathode potential is negligible at low
current densities and gains more importance as the current
density is increased. Although the expression of ohmic
potential loss due to proton migration involves exponential

Fig. 6. Polarization curves for cathodes with different values of effective
proton conductivity of ionomer phase in catalyst layer. (A)keff

m = 0.035
mho cm−1; (B) keff

m = 0.0035 mho cm−1; (�) one-dimensional model;
(�) approximate model I; (�) approximate model II.
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and fractional functions of current density, it behaves in a
linear fashion as illustrated by the results shown inFig. 2.

The diffusion layer is a very important component in
determining the cathode performance at high current densi-
ties. Under operation, the effective porosity of the cathode
diffuser changes with the amount of liquid water that ac-
cumulates in the layer. It depends on the physical and
chemical properties of the layer, the degree of external hu-
midification, and the current density. Some research efforts
have been made to uncover such dependencies[7,10]. Since
the emphasis of the present work is placed on investigat-
ing the accuracy of the developed performance equations,
a constant value of effective porosity is adopted for the
diffuser in calculating the polarization curves. Once an ex-
plicit, algebraic expression that describes the reliance of the
effective porosity of diffuser on current density and other
parameters is available[25], such a relation can be directly
incorporated into the present performance equations. The
polarization curves for the cathodes with two differentε
values are presented inFig. 7, which have also been calcu-
lated using the three models developed in the present work.
As illustrated, the polarization curves obtained from the
three models are almost identical. At low and intermediate
current densities, where the diffusion limitations of oxygen
within the diffuser are not significant, the potentials of these
two cathodes are quite close. Nevertheless, at high current
densities, where the diffusion limitations of oxygen within
the diffuser play a more important role in the cathode per-
formance, the cathode withε = 0.1 yields a lower potential
than that withε = 0.4. As revealed byEq. (32)andTable 1,
variations ofε lead to different values of oxygen concentra-
tion at the gas-diffuser|catalyst-layer interface. Thus, except
the activation overpotential for oxygen reduction, all other
contributive terms to the overall cathode overpotential will,
more or less, be influenced byε. Among these terms, the
diffusion overpotential of the diffuser is the one that is most

Fig. 7. Polarization curves for cathodes with different effective porosity
of gas diffuser. (A)ε = 0.4; (B) ε = 0.1; (�) one-dimensional model;
(�) approximate model I; (�) approximate model II.

effected. It is also noted that the limiting current density
of the cathode withε = 0.1 is around 0.85A cm−2 and the
value for the cathode withε = 0.4 is much higher, which
is not covered by the data inFig. 7.

6. Summary and conclusions

In the present work, a mechanistic approach has been
presented to derive the performance equations for PEFC
cathodes. In this approach, the oxygen concentration profile
in the catalyst layer is approximated by a parabolic poly-
nomial or a piecewise parabolic relationship, as determined
by the occurrence of oxygen depletion. Two different func-
tions, namely, a parabolic and a piecewise linear one, have
been suggested to approximate the profiles of the ionomer
potential and catalyst potential in the catalyst layer. It has
been shown that the piecewise linear function gives simpler
expressions for the potential losses due to electron con-
duction and proton migration without any penalty in the
accuracy of the cathode potential. The current density is
estimated though lumping the rate of oxygen reduction at
the reaction center. Stefan–Maxwell multi-component dif-
fusion equations are employed for the description of mass
transport of gaseous species within the diffuser. Investiga-
tions on the accuracy of the present performance equations
have been carried out for a wide range of parameter values.
Computational results reveal that the proposed equations are
capable of providing accurate predications for an extended
operation domain, namely, from a point near the equilib-
rium potential to the condition where a limiting current
occurs.
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